
Hans-Petter Halvorsen

https://www.halvorsen.blog

Week Assignment
Software Testing – Test Execution

Week Assignment
1. Start to Test your Software according to STP
2. Create Unit Tests for your Code
3. Scrum Activities and Meetings
– Finishing Beta Iteration
• Sprint Review Meeting)
• Sprint Retrospective Meeting

– Start Working on Next Iteration (RC)
• Sprint Planning Meeting

https://en.wikipedia.org/wiki/Freeze_(software_engineering)

In software engineering, a freeze is a point in time in the development process after which the
rules for making changes to the source code or related resources become more strict, or the
period during which those rules are applied.

No Programming in Class these 2 weeks! – otherwise it is easy to loose focus on Testing

Code Freeze: Tuesday 10:15-14:00 and Friday 10:15-14:00

https://en.wikipedia.org/wiki/Freeze_(software_engineering)

Why Testing?
• Make sure the software fulfills the Requirements from the

Customers (Software Requirements Specification, SRS)
• Make sure the Software don't contain critical Bugs
• Make sure the software can be installed at the customer.

The customer don't have Visual Studio!
• Make sure the software are user-friendly and intuitive to

use
• Make sure the software is robust and has acceptable

performance (so it don't crash when more than 1 person are
using it, or if the database contain lots of data, etc.)

Create Software Test Plan (STP)

Create Virtual Test Environment

Test the Software according to STP

Create Unit Tests in Visual Studio

Test Planning

Test Execution

1

2

3

4

Test Planning and Execution

Previous Week

This Week

Hans-Petter Halvorsen

https://www.halvorsen.blog

Software Testing

Table of Contents

Levels of Testing
Unit Testing: Test each parts
independently and isolated

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.
Interaction with other systems
(Hardware, OS, etc.)

System Testing: Test the whole system

Regression Testing: Test
that it still works after a
change in the code

Testing
• Test you software according to the Requirements and Design

Documents and the Software Test Plan
• Report Bugs as Work Items in Azure DevOps

Planning Tests Perform Tests Document
Test Results

Software Test
Plan (STP)

Software Requirements Specifications (SRS)
Software Design Document (SDD)

Software Test
Documentation (STD)

Test Logs

- Functional & Non-Functional Requirements
- User & System Requirements

Why Find Bugs early?

9

Requirements

Design

Implementation

Testin
g

Deployment

Software Development Life Cycle (SDLC)

Cost per defect/Bug

St
ar

t
Finished

Requirements
& Design

Development & Coding

Continuous Testing in the whole SDLC!

Al
ph

a

RCBe
ta

RT
M

Final
Delivery

Testing

Testing Testing Testing Testing

Increased
Focus

Increased
Focus

Increased
Focus

Increased
Focus

Agile/Scrum: Periodically Iterations/Sprint every 14-30 days

...... ...

Code
Freeze

Software without
Critical Bugs

Requirements &
Functionality

FunctionalityRequirements

You can never find all Bugs!
Released Software do have Bugs!

Eat your own dog food
• You are not giving food to your dog without first

taste it yourself?
• You are not giving things to others that you dont

like yourself?
• This means that you should use the Software you

create yourself on a daily basis.
• If you are happy with the Software and are able to

use it, most likely the Customer will also like it and
be able to use it

Eating your own dog food - Wikipedia

https://en.wikipedia.org/wiki/Eating_your_own_dog_food

Hans-Petter Halvorsen

https://www.halvorsen.blog

Test your Software

Table of Contents

See Next Slides for more details...

Test your Software
• Test your system according to the Software Test Plan

(STP).
– Make sure to test the part of the Software that you have

not created
• Make sure to document the Test Results.
– Bugs should be in addition be reported as “Bug” Work Items

in Azure DevOps.
• Create Queries in Azure DevOps (a “Buglist”).
– Prioritize and Fix the Bugs according to the List of Bugs

• Make Software Test Documentation (STD)

Start Testing the entire Software (and Documentation)
q My Test Environment is ready
q Read the STP and start testing according to STP
q Execute and Fill in Test Cases.
q Try to break the system. Do the unexpected!, go crazy!
q Each Person should Report at least 10 Bugs
or Features in Azure DevOps (Work Items)
q Each Person should create at least 2 personal (My Queries) Queries and 2

Shared Queries in Azure DevOps. Examples:
• Bugs Assigned to Me
• Bugs Reported by Me
• New Bugs Last 24 Hours, etc.

q Upload Test Cases you have filled out to Teams or Azure DevOps
q Prioritize and (later) Fix the Bugs according to the List of Bugs

Test Execution and Reporting Name:______________

Bugs:_______
New Features: _______

My Query 1: ________________
My Query 2: ________________
Team Query 2:______________
Team Query 2:______________

One of the students submitting this form will receive a prize!

Development vs. Testing
You need to think

different when Testing
compared to when

Developing the System

http://testingeduindia.blogspot.no/2014/04/a-day-between-developer-and-tester.html

Goal: Find as much
bugs, improvements,

etc. as possible!!!

http://testingeduindia.blogspot.no/2014/04/a-day-between-developer-and-tester.html

How shall tests be documented?
• It is not enough simply to run tests
• The results of the tests must be systematically

recorded.
- Typically, the Customers wants to see documentation that the system has been

properly tested
- Or the Quality Manager will not approve that you release a Software without seeing

the documentation that the system has been properly tested

• It must be possible to audit the testing process to
check that it has been carried out correctly

• How you do this must be described in the Software
Test Plan (STP) http://www.softwareengineering-9.com/Web/Testing/Planning.html

http://www.softwareengineering-9.com/Web/Testing/Planning.html

Software Test Documentation (STD)
Suggestions of contents:
• Executed Test Cases that the Testers have filled

out (Passed/Not Passed, Comments, etc.)
• Export of reported Bugs from Azure DevOps
• Some Plots/Charts that gives an overview of

number of Bugs Reported and Fixed, etc.
• In addition, some text explaining these things

STD Contents Examples
• Code Reviews
• Test Environment
• Executed Test Cases
• Test Results
• Bug Reports, Bug Queries
• Analysis of Testing and Test Results (Tables, Charts, etc.)

– Number of Bugs found, Number of fixed bugs, remaining bugs, etc.
• Discussions and Conclusions

– Is the system ready for release?
Details can be in Appendices or available as separate documents
→ STD document and details should be available from HTML Web Site

Software Finished

Time

When to Stop Development?

“90%”
“100%”

Details, small adjustments, etc.
The last 10% takes a lot of time!!!

Sooner or later you have to say enough is
enough and release version 1.0.

One must define within the development
company, development team or in dialogue
with the customer what is defined as "good
enough". Software will never be 100% complete
or error-free!

When to Stop Testing?

A simple answer is to stop testing when all the planned test cases are
executed and all the problems found are fixed. In reality, it may not be
that simple. We are often pressured by schedule to release software
product.

http://dilbert.com

http://dilbert.com/

Number of Bugs

Time

When to Stop Testing?

Resources, Effort, etc. in

order to find Bugs

Critical Point

In the beginning it it easy to
find bugs with few resources

When should you stop Testing?
(depends on Time, Budget, etc.)

When to Stop Testing?
• When the tester has not been able to find another

defect in 5 (10? 30? 100?) minutes of testing
• All code reviews and walkthroughs have certified the

code as ok
• When a given checklist of test types has been

completed
• The code has passed all unit tests
• When testing runs out of its scheduled time
• ...

E. J. Braude and M. E.Bernstein, Software Engineering: Modern Approaches, 2 ed.: Wiley, 2011. +++

These things needs to be documented in the Software Test Plan (STP)

80 – 20 Rule
• It takes 20% of the time to finish 80% of your

application -> “Prototype” (80% finished)
• 80% of the users only use 20% of the features
• 80% of performance improvements are found

by optimizing 20% of the code
• 80% of the bugs are found in 20% of the code

http://swreflections.blogspot.no/2013/11/applying-8020-rule-in-software.html

http://swreflections.blogspot.no/2013/11/applying-8020-rule-in-software.html

Work Items – New Bug
We use Azure DevOps as our Bug Reporting Tool

Queries
• Used to find existing Work Items
• You may create different Queries to make it easy to find

the Work Items you need
• Queries may be personal or visible for everybody in the

project (Team Queries)

25

Creating a Query - Example

Work Items Example

You can create
Queries (both
Personal and Team
Queries)

List of Work Items

Work Item Details

Make sure to fill out “Assigned To”,
Correct “Iteration” and “Area”

Hans-Petter Halvorsen

https://www.halvorsen.blog

Unit Testing

Table of Contents

See Next Slides for more details...

Unit Testing
• Create Unit Tests for your code
– Not for all your code, just a few examples in order to learn

how it is done in practice.
• Each member in the Team should write at least 2 Unit

Tests for their code
• Planning to Create New Code? Next Time you should

try to Create a Unit Test before you start Coding
• Unit Testing should also be part of the System

Documentation (coming up soon)

Individual Activity

q Watch/Do the Examples in the Video
q Create at least Unit Tests for 2 different Methods in

your code:
qUnit Test 1: ______________________________
qUnit Test 2: ______________________________

qRun the Units Tests:
qFailed/Passed? _______________________________
qCode Coverage _______________________________

Name:______________

Create Unit Tests in Visual Studio
One of the students submitting this form will receive a prize!

What are Unit Tests
• Unit Testing (or component testing) refers to tests

that verify the functionality of a specific section of
code, usually at the function level.

• In an object-oriented environment, this is usually at
the class and methods level.

• Unit Tests are typically written by the Developers as
part of the programming

• Automatically executed (e.g., Visual Studio and
Azure DevOps have built-in functionality for Unit Testing)

Unit Tests Frameworks
Unit Tests Framework are usually integrated with the IDE
• Visual Studio Unit Test Framework. Unit Tests are built into Visual Studio (no additional

installation needed)
Others:
• JUnit (Java)

– JUnit is a unit testing framework for the Java programming language.
• NUnit (.NET)

– NUnit is an open-source unit testing framework for Microsoft .NET. It serves the same purpose
as JUnit does in the Java world

• PHPUnit (PHP)
• LabVIEW Unit Test Framework Toolkit
• etc.

All of them work in the same manner – but we will use the Visual Studio Unit Test Framework

Unit Testing and Documentation
How/where shall Unit Testing be included in the
documentation?
• Software Test Plan (STP)

– Test Planning, Unit Testing is an important part of that!
• Test Documentation

– Documentation, Test execution and Test Results, Unit Testing is an
important part of that!

• System Documentation
– Used to maintain and further development of the system, Unit

Testing is an important part of that!
– More about System Documentation Next Week!

Unit Tests – Best Practice
• A Unit Test must only do one thing
• Unit Test must run independently
• Unit Tests must not be depend on the environment
• Test Functionality rather than implementation
• Test public behavior; private behavior relates to implementation details
• Avoid testing UI components
• Testing Methods writing/retrieving Data to/from a Database can also be

challenging
• Unit Tests must be easy to read and understand
• Create rules that make sure you need to run Unit Tests (and they need to

pass) before you are allowed to Check-in your Code in the Source Code
Control System http://www.uio.no/studier/emner/matnat/ifi/INF5530

http://www.uio.no/studier/emner/matnat/ifi/INF5530

Unit Testing in Visual Studio
To create a unit test project:
1. On the File menu, choose New and then choose Project (Ctrl + Shift + N).
2. In the New Project dialog box, expand the Installed node, choose the

language that you want to use for your test project, and then choose Test.
3. To use one of the Microsoft Unit Test frameworks, choose Unit Test Project

from the list of project templates. Otherwise, choose the project template of
the Unit Test Framework that you want to use.

4. In your Unit Test Project, add a reference to the code under test. Here’s how
to create the reference to a code project in the same solution:

a. Select the project in Solution Explorer.
b. On the Project menu, choose Add Reference....
c. In the Reference Manager dialog box, open the Solution node and choose

Projects. Check the code project name and close the dialog box.

Unit Testing in Visual Studio

You need to Add a “Unit Test Project” to
your existing solution in Visual Studio

37

Add Reference to the Code under Test

Unit Testing in Visual Studio Example

Your ordinary Project

Your Unit Test Project

Hans-Petter Halvorsen

https://www.halvorsen.blog

Scrum Activities and
Meetings

Table of Contents

See Next Slides for more details...

Scrum Activities and Meetings
Status: We are finished with "Beta" Iteration and
should start on the next Iteration ("RC").

Self-activities within the Teams:
1. Sprint Review Meeting ("Beta" Iteration)
2. Sprint Retrospective ("Beta" Iteration)
3. Sprint Planning ("RC" Iteration)

The Team has done the following activities:
q Sprint Review Meeting ("Beta" Iteration)
Short Status report: ___
__
__

q Sprint Retrospective ("Beta" Iteration)
q Action List:
1. Keep doing: ___
2. Start doing: ___
3. Stop doing: ___

q Sprint Planning ("RC" Iteration)
q New Sprint Backlog has been made. # Tasks: ___ Est. Hours: ___

Scrum Activities and Meetings
Team:_______________

http://geek-and-poke.com

http://geek-and-poke.com/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

